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The partitioning of pesticides into different environmental compartments depends mainly on the physico-
chemical properties of the studied chemical. To rank pesticides according to their distribution tendency
in various media, we propose a combination of two multivariate approaches: Principal Component
Analysis and Hierarchical Cluster Analysis. In such explorative methods we take into account physico-
chemical properties like the organic carbon partition coefficient (Koc), the n-octanol/water partition coefficient
(Kow), water solubility (Sw), vapour pressure (VP) and Henry’s law constant (H), being the more relevant to
the determination of environmental partitioning.
The 54 studied pesticides of various chemical categories are thus ranked in 4 a priori classes according to

their environmental behaviour (sorbed, soluble, volatile and non-volatile/medium class) and finally assigned
to the defined four classes by different classification methods (CART, K-NN, RDA) using theoretical
molecular descriptors. This QSPR approach allows a rapid indication of the environmental distribution of
pesticides starting only from their molecular structure.
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INTRODUCTION

Pesticides have provided mankind with powerful weapons against insect pests, disease
and weeds, and this has resulted in great economic and health benefits to society. The
widespread use and distribution of pesticide chemicals is of great relevance and their
potential for adverse consequences, such as their environmental impact on the quality
of water and wildlife habitats, has led to the development of detailed analyses for poten-
tial environmental hazards associated with their use [1–3]. Better knowledge of pesticide
environmental behaviour, i.e., absorption in soil, possibility of leaching in groundwater
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and volatility in the atmosphere, is a primary goal for an accurate environmental and
human risk assessment. Environmental behaviour is strongly influenced by the proper-
ties inherent in the compounds themselves, particularly physico-chemical properties
such as solubility in water, vapour pressure and partitioning coefficients between
organic matter in soil or biota and water.

When assessing pesticide environmental distribution it is most important not only to
know, but also to have an understanding of, these properties. Such knowledge can
be used to develop a simple and preliminary approach to rank specific compounds
according to their intrinsic partitioning tendency, categorising them in different
environmental compartments [4–7]. The main goal of this work has been to develop
a simple procedure based on a QSAR/QSPR (Quantitative Structure–Activity
or Property Relationships) approach for a preliminary screening, ranking and classifi-
cation of organic pesticides (including those not yet synthesised) according to their
environmental partitioning, using only the knowledge of their chemical structure.
This initial classification could be invaluable in selecting (at the chemical development
level, or later) substances for which further investigations should be made, for instance
for dangerous potential leaching in groundwater. Such a preliminary selection
could lead to better investment in research efforts for ‘‘environmentally friendly’’
chemicals.

This article deals with a heterogeneous and representative data set of non-ionic
pesticides of different organic classes (acetanilides, carbamates, dinitroanilines, organo-
chlorines, organophosphates, phenylureas, triazines); the data set was selected from
a bigger data set studied by our team in recent years. These pesticides have already
been the subject of QSPR studies, using theoretical molecular descriptors in modeling
the Koc and leaching and volatility indexes (LIN and VIN), recently published by
Gramatica et al. [8, 9].

METHODS

Experimental Data

A data set of 54 non-ionic organic pesticides, representative of different chemical
classes, was selected. In order to obtain a reliable and homogeneous data set of the
considered partition properties, soil adsorption coefficients were taken from the work
of Sabljic et al. [10], where the Koc values measured in soils with a low carbon content
had been excluded as the pesticide interaction with the inorganic matrix of the soil
could have become important; the predicted values were calculated by our published
QSPR models [8]. Also the n-octanol/water partition coefficients are those of Sabljic
et al. Water solubility and vapour pressure data are from The Pesticide Manual [11].
The Henry’s law constants were taken from a critical review made by Suntio et al.
[12]. The data, all measured at 25�C, were always transformed into logarithmic units
and are reported in Table I.

Molecular Descriptors

The theoretical molecular descriptors were computed using the DRAGON package
of Todeschini and Consonni [13] downloadable (gratis) from the web. The input
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TABLE I Experimental data and classes of 54 pesticides

ID Compounds CAS Log Koc Log Sw Log Kow Log VP Log H Class

1 Alachlor 15972-60-8 2.28 2.38 3.52 0.27 �2.21 4
2 Propachlor 1918-16-7 2.42 2.79 2.18 1.49 �1.96 2
3 Aldicarb 116-03-3 1.50 3.78 1.13 0.60 �3.49 1
4 Butylate 2008-41-5 2.11 1.66 4.15 3.24 �0.25 2
5 Carbaryl 63-25-2 2.40 2.08 2.36 �0.80 �2.89 4
6 Carbofuran 1563-66-2 1.75 2.55 2.32 �1.10 �3.29 4
7 Chlorpropham 101-21-3 2.53 1.95 3.51 0.03 �2.68 4
8 Diallate (cis) 2303-16-4 3.28 1.15 3.67 1.30 �0.60 2
9 Diallate (trans) 2303-16-4 3.28 1.15 3.67 1.30 �0.60 2
10 EPTC 759-94-4 2.38 2.54 3.21 3.66 0.01 2
11 Methomyl 16752-77-5 1.30 4.76 0.60 0.82 �4.19 1
12 Oxamyl 23135-22-0 1.00 5.45 �0.47 1.49 �3.59 1
13 Propoxur 114-26-1 1.67 3.26 1.52 0.11 �0.89 2
14 Triallate 2303-17-5 3.35 0.60 4.53 1.17 0.01 2
15 Vernolate 1929-77-7 2.33 2.03 3.84 3.11 0.31 2
16 Pirimicarb 23103-98-2 1.90 3.43 1.70 0.60 �3.49 1
17 Benfluralin 1861-40-1 3.99 �1.00 5.29 0.94 0.13 3
18 Dinitramine 29091-05-2 3.63 0.04 3.89 �0.32 �0.80 3
19 Profluralin 26399-36-0 4.01 �1.00 5.08 0.92 1.59 3
20 Trifluralin 1582-09-8 3.93 �0.52 5.34 1.17 0.60 3
21 Aldrin 309-00-2 4.69 �1.57 6.50 �0.06 1.96 3
22 Chlordane 12709-03-6 5.15 �1.22 5.80 0.12 0.96 3
23 p,p-DDT 50-29-3 5.31 �2.26 6.91 �1.60 0.37 3
24 p,p-DDE 72-55-9 4.82 �1.00 6.96 �0.06 0.90 3
25 Dieldrin 60-57-1 4.55 �0.74 5.20 �0.40 0.05 3
26 Endosulfan 115-29-7 4.13 �0.49 3.83 �1.65 0.47 3
27 Lindane 58-89-9 3.00 0.85 3.76 0.64 �0.89 2
28 Azinphos methyl 86-50-0 2.28 1.46 2.75 �1.58 �2.49 4
29 Carbophenothion 786-19-6 4.66 0.00 5.66 0.04 �1.34 3
30 Chlorpyrifos 2921-88-2 3.70 �0.40 5.27 0.35 0.24 3
31 Chlorpyrifos methyl 5598-13-0 3.52 0.60 4.31 0.75 �0.47 2
32 Diazinon 333-41-5 2.75 1.78 3.81 0.90 �1.17 2
33 Dimethoate 60-51-5 1.20 4.60 0.78 0.52 �3.96 1
34 Disulfoton 298-04-4 3.22 1.40 4.02 1.30 �0.66 2
35 Ethion 563-12-2 4.06 0.04 5.07 �0.46 �1.49 3
36 Fenitrothion 122-14-5 2.63 1.48 3.30 �0.88 �2.44 4
37 Malathion 121-75-5 3.07 2.11 2.36 0.03 �2.63 4
38 Parathion ethyl 56-38-2 3.20 1.38 3.83 �0.18 �1.92 4
39 Parathion methyl 298-00-0 3.00 1.78 2.86 0.30 �1.68 4
40 Phorate 298-02-2 2.70 1.34 3.56 1.93 �0.19 2
41 Trichlorfon 52-68-6 1.90 5.08 0.51 �0.58 �5.77 1
42 Dichlorvos 62-73-7 1.67 4.00 1.43 2.42 �0.72 2
43 Fenuron 101-42-8 1.40 3.59 0.98 1.42 �3.57 1
44 Monuron 150-68-5 1.95 2.36 1.94 �1.18 �2.52 4
45 Diuron 330-54-1 2.40 1.62 2.68 �2.04 �2.92 4
46 Linuron 330-55-2 2.70 1.88 3.20 0.35 �2.27 4
47 Ametryn 834-12-8 2.59 2.27 2.98 �0.44 �3.92 4
48 Atrazine 1912-24-9 2.24 1.52 2.61 �1.41 �3.54 4
49 Prometon 1610-18-0 2.60 2.86 2.99 0.01 �4.04 4
50 Prometryn 7287-19-6 2.85 1.52 3.51 �0.78 �3.30 4
51 Propazine 139-40-2 2.40 0.93 2.93 �1.76 �4.00 4
52 Simazine 122-34-9 2.10 0.79 2.18 �2.53 �3.47 4
53 Secbumeton 26259-45-0 2.78 2.78 3.20 �0.01 �3.46 4
54 Terbutryn 886-50-0 2.85 1.34 3.74 �0.55 �2.89 4

Sw mg/L; VPmmHg; H atmm3/mol. All at 25�C.
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files for descriptor calculation, containing information on atom and bond types,
connectivity, partial charge and atomic spatial coordinates relative to the minimum
energy conformation of the molecule, were obtained by the molecular mechanics
method of Allinger (MMþ), using the HYPERCHEM package [14]. An initial set of
236 descriptors was used to describe compound structural diversity and to select
those useful for the studied classification. We calculated the following: (a) constitu-
tional descriptors (0D and 1D-descriptors, i.e., counting of atoms, bonds and frag-
ments, MW and sum of atomic properties); (b) topological descriptors (2D-descriptors
from molecular graphs); (c) WHIM (Weighted Holistic Invariant Molecular) descriptors
[15] that contain information on the whole 3D-molecular structure in terms of size,
symmetry and atom distribution and (d) empirical descriptors: unsaturation index
(Ui) and hydrophilic factor (Hy). We also added the number of hydrogen atoms for
hydrogen bonds (nHDon) and the number of atom acceptors of hydrogen in the
same type of bonds (nHAcc). The meaning of the calculated descriptors for the studied
compounds is reported in the cited software and in the literature [16].

Chemometric Methods

Data exploration and multivariate analysis of physico-chemical properties by Principal
Component Analysis and Hierarchical Cluster Analysis was performed on autoscaled
data by the SCAN program [17] for the definition of a priori classes. In the Cluster
Analysis the complete linkage and the Euclidean distance among the chemicals
on the autoscaled variables (the five studied physico-chemical properties) were applied.
The classification models were also obtained using the SCAN package. Classification
And Regression Tree (CART) is the nonparametric classification strategy [18]
that makes an automatic stepwise variable selection (among the 236 molecular
descriptors used as input), and displays, as the final result, a binary classification tree
that is applicable immediately. The proportional class prior and the splitting
criterion of Gini were applied to autoscaled variables. Another classification method
used on the descriptors selected by CART was the K-Nearest Neighbor (KNN),
a classification method that searches for the k nearest neighbours of each object in
the data set, performing the classification of the considered object by considering
the majority of the classes to which the k-th nearest objects belong. This method
was applied to autoscaled data with a priori probability proportional to the size
of the classes; the predictive power of the model was checked for K values between
1 and 10.

The third classification method applied was Regularised Discriminant Analysis
(RDA) (optimal �¼ 0.25 and �¼ 0.00).

To check the classification model prediction ability, Misclassification Risk (MR%)
and Misclassification Risk in prediction (MRcv%), calculated by the leave-one-out
procedure (one chemical out of the training set and predicted by the model at
each step), were used. Comparison with the No-Model Misclassification Risk
(NOModMR%) allowed the evaluation of model performance: it is a reference meas-
ure for classification without any classification model, i.e., all the objects are consid-
ered as belonging to the most numerous class and the misclassification risk is
calculated as the ratio between the number of these objects and the total number
of objects.
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RESULTS AND DISCUSSION

The principal aim of this work is the proposal of a simple approach that uses only struc-
tural information for pesticide screening/ranking according to the distribution tendency
in different environmental media. The first step in this screening/ranking procedure is
to combine, by Principal Component Analysis and Hierarchical Cluster Analysis, the
most relevant partitioning properties for the grouping of chemicals with ‘‘similar’’
behaviour and the definition of a priori classes. These classes are then modelled by dif-
ferent classification methods using theoretical molecular descriptors. This QSPR
approach can be used to calculate the partitioning tendency of a new chemical on
the basis of only structural information in a pre-screening phase.

Pesticide Ranking According to Environmental Partitioning

Pesticide environmental behaviour is clearly controlled by a variety of physical and
chemical processes that are influenced, simultaneously, by several physico-chemical
properties of the compounds, properties that are particularly relevant in determining
pesticide distribution throughout the different environmental compartments. These
basic physico-chemical properties of environmental concern are vapour pressure
(VP), water solubility (Sw), and various partition coefficients among different compart-
ments: Henry’s law constant (H), octanol/water partition coefficient (KOW), organic
carbon sorption coefficient (KOC). For instance, leaching in water is much more evident
for chemicals that have, simultaneously, relatively high solubility and low sorption
capacity, and this calls for a multivariate approach.

Principal Component Analysis (PCA) and Hierarchical Cluster Analysis are explora-
tive multivariate techniques that, applied to the above-mentioned physico-chemical
properties, allow the fast ranking and grouping of pesticides according to their similar
environmental behaviour and distribution tendency in different media, contempora-
neously taking into account the more environmentally involved physico-chemical
properties.

Figure 1 shows the bi-plot of the PCA for 54 pesticides described by the studied phy-
sico-chemical properties, the chemicals (dots) being ranked in the space defined by the
first two principal components according to their relative partitioning tendency in the
different media. These principal components give most of the information in the data:
in fact, the cumulative explained variance of the first two principal components is
94.6% and the first component alone provides most of the information
(PC1¼ 70.1% and PC2¼ 24.5%). The loading plot (lines in Fig. 1) reveals the relevance
of each variable in each of the first two principal components. It is interesting to note
that PC1, where the solubility and sorption coefficients play opposite roles, tends to
discriminate between the relatively more-sorbed/less-soluble and the more-soluble/
less-sorbed pesticides, while PC2, where volatilisation parameters (vapour pressure and
Henry’s law constant) dominate, appears to differentiate between volatile and non-
volatile compounds. The Henry’s law constant has a similar influence on both PC1
and PC2, as can be expected from its calculation (vapour pressure/water solubility).

Some chemicals show extreme behaviour, lying along the edges of Fig. 1: for instance
aldrin (21), chlordane (22), p,p-DDT (23) and p,p-DDE (24) appear to be the most-
sorbed/less-soluble compounds in the studied data set, being to the right in the graph
along PC1, while methomyl (11), oxamyl (12), dimethoate (33), and trichlorfon (41)
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appear the most-soluble/less-sorbed compounds, being to the left in the graph. The
number in parentheses are taken from Table I. Along PC2, the compounds diuron
(45), propazine (51) and simazine (52) appear the least volatile, having the lowest
score. On the other hand the compounds butylate (4), EPTC (10), vernolate (15) and
dichlorvos (42) appear the most volatile because of their high score. The results of
the PCA-based screening are similar to those of other approaches, e.g., the GUS
index [6] or the Hasse diagram [7], but differ in a way that offers a multimedia and
simultaneous picture of the possible partition behaviour, showing possible slight differ-
ences among the chemicals. This translates into a fast screening step of the studied
chemicals for their partitioning tendency in a multimedia environment, revealing
PCA to be a convenient explorative method for an initial assessment.

As the pesticide ranking obtained by PCA alone does not allow the grouping of the
pesticides into defined classes of environmental behaviour (in practice groups that are
not well separated are identifiable in the PCA-graph of Fig. 1), the same chemicals are
then grouped again by combining the same studied physico-chemical properties
by Hierarchical Cluster Analysis (using the complete linkage and the Euclidean distance
metric); this results in four clusters. Figure 2 shows the dendrogram of this cluster
analysis. Note that four clusters are evident: the most-soluble/least-sorbed pesticides
are grouped in Cluster 1, and the most-sorbed/least-soluble pesticides are collected in
Cluster 3, the most and the least volatile pesticides (together with the compounds of
medium behaviour) are divided in two central clusters (Clusters 2 and 4, respectively).

At this stage, the combination of the two multivariate explorative analyses allow
the grouping of the studied pesticides into four classes, corresponding to the above
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chemical properties (Koc, Kow, Sw, VP, Henry’s law constant) for 54 pesticides. Cumulative explained variance:
94.6%; expl. var. of PC1: 70.1%.
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clusters: soluble, sorbed, volatile and non-volatile (or medium behaviour). These four
a priori classes of pesticides are highlighted in the PCA-graph (Fig. 1) by the circles
and reported in Table I.

Classification of Pesticide Environmental Distribution

The final step in this work is the proposal of a fast and simple tool for classifying
non-ionic organic pesticides for their environmental distribution starting only from
molecular structure using the QSAR/QSPR approach.

QSAR (Quantitative Structure–Activity Relationships) or QSPR (Quantitative
Structure–Property Relationships) studies are based on the fundamental assumptions
of Corvin Hansch [19], considered the father of this approach. He demonstrated that
‘‘the molecular structure of a chemical influences its physico-chemical properties and
biological activity’’ and that ‘‘structurally similar compounds behave similarly’’.

Classification models are quantitative models based on relationships between one
or more independent variables (here the theoretical structural descriptors) and a
categorical response variable of integer numerical values, each representing the class
of the corresponding sample (here the a priori defined classes). For new compounds,
where class is obviously unknown, the classification model can be useful to predict
an assignment to a defined class. The great advantage of the proposed classification
model is that it is possible to assign each compound to a class using only a few
molecular descriptors, and the same holds also for heterogeneous chemicals.
Different chemometric classification procedures like CART (Classification And
Regression Tree), RDA (Regularised Discriminant Analysis) and K-NN (K-Nearest
Neighbours) have been applied here.

A first classification model was calculated by CART (Classification And Regression
Tree) by using as input all the calculated molecular descriptors, as defined in the
Methods section. CART is the non-parametric classification strategy that makes an
automatic stepwise variable selection (among the 236 input molecular descriptors) of
the descriptors most useful in the discrimination of the chemicals in the a priori classes,

3 16 43 11 33 12 41 5 6 44 47 49 53 1 7 46 37 39 38 36 50 54 28 45 48 51 52 2 42 13 4 15 10 8 9 34 14 31 27 32 40 21 24 22 23 17 20 30 19 18 26 25 29 35

  100.00

   66.67

   33.33

    0.00

Similarity

1 Soluble 4 Not Volatile/Medium 2 Volatile 3 Sorbed

FIGURE 2 Dendrogram of cluster analysis: cluster 1, soluble pesticides; cluster 2, volatile pesticides; cluster
3, sorbed pesticides; cluster 4, non-volatile/medium pesticides.
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and displays as the final result a binary classification tree (Fig. 3), that can be
interpreted easily and is simple to use for further predictions.

The performance of the obtained model is quite good, having a misclassification risk
(MR%) in fitting of 11.11% and a cross-validated misclassification risk in prediction
(MRCV%) of 18.53%. These results are very satisfactory compared with the
corresponding misclassification risk of 62.96% in absence of the model. The obtained
CART model is based on three very simple molecular descriptors that hierarchically
assign each compound to a predefined class (the integer number on the graph baseline
in Fig. 3). At each knot of the tree the chemicals with a selected descriptor value higher
than the reported cut-off value are assigned to the right class. The first discriminating
descriptor is the molecular weight (MW), related to molecular size in terms of the
number of atoms, and also to the kind of atoms, in the molecule; the cut-off value,
reported in the knot of the tree, allows a first separation of the compounds: pesticides
with MW higher than 317.69 are assigned to Class 3 of the most-sorbed/least-soluble
chemicals. The topological Balaban index (named J in the software DRAGON, calcu-
lating the mean squared distance between the atoms in the chemical structure) is a
further discriminator: a value of 2.53 separating all the chemicals of the non-volatile/
medium class (Class 4) from the other pesticides. Finally, the number of hydrogen
donor groups for hydrogen bonds (nHDon) (for instance OH, NH, etc) allows the
separation of the pesticides into the two classes of most-soluble/least-sorbed (Class 1)
and most volatile (Class 2). All the selected molecular descriptors are quite easily inter-
pretable: (a) the MW encodes information on the molecule’s dimensions and it is well
known that big molecules have the greatest tendency to bind, by van der Waals forces,
to the organic component of the soil, becoming the most sorbed in organic soils but the
least soluble in water (Class 3); (b) the possibility of a chemical forming hydrogen

FIGURE 3 Classification tree by CART (Classification and Regression Tree). Misclassification risk:
11.11%; misclassification risk in prediction: 18.53%; NoModMR: 62.96%.
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bonds with water molecules (encoded in the molecular descriptor nHDon) results in
the higher solubility of the Class 1 pesticides; furthermore the chemical with fewer intra-
molecular hydrogen bonds are the most volatile (Class 2); (c) the last topological des-
criptor J, that discriminates Class 4 of the medium-behaviour pesticides, is not easily
interpretable. The same three molecular descriptors, selected by the CART procedure
as the most discriminating, are then applied in two other classification methods:
K-Nearest Neighbor (K-NN) and Regularised Discriminant Analysis (RDA). The dis-
criminant power of the variables is also highlighted by these classification methods, the
performance being even slightly better than that obtained by CART (see Table II).

All the methods assign more than 44 chemicals correctly, CART makes 10 errors in
prediction and K-NN and RDA 9. A comparison of the assignments in the classifica-
tion predictions of all the applied methods highlights the pesticides classified wrongly
by all the methodologies: alachlor (1) from Class 4 in Class 2, propoxur (13) from
Class 2 in Class 4, pirimicarb (16) from Class 1 in Class 3, azinphos methyl (28)
from Class 4 in Class 3, fenuron (43) from Class 1 in Class 4, while malathion (37),
at the centre of the Fig. 1 graph, from Class 4 is wrongly assigned to different classes
by all the methods (clearly it is the most problematic chemical to be classified by
molecular descriptors). These errors can be considered serious only for pirimicarb
(16), azinphos methyl (28) and fenuron (43), while the other chemicals lie at the
border of the defined classes, and it is important to note that these borderlines
among the classes (derived from previous PC and Cluster Analyses) can be considered
as rather arbitrary.

CONCLUSIONS

The experimental data of the physico-chemical properties, considered relevant to the
environmental partitioning of 54 pesticides of different chemical classes, are combined
in Principal Component Analysis and Hierarchical Cluster Analysis, obtaining a rank-
ing of these pesticides into four a priori classes according to environmental behaviour
(sorbed, soluble, volatile and non-volatile/medium classes). Classification by different
classification methods (CART, K-NN and RDA) using only theoretical molecular
structure descriptors allows a fast screening of both existing and new pesticides belong-
ing to the studied chemical domain; such classification is done with regard to behaviour
in the environment, and is based simply on the knowledge of molecular structure.
In practice, with only three descriptors of molecular structure, the proposed classifica-
tion models lead to an immediate assessment of pesticide tendency to partitioning into
different environmental compartments.

TABLE II Classification model results

Method N. Obj. No-model MR% MR% MRcv % Molec. descriptors

CART 54 62.96 11.11 18.53 MW - J - nHDon
K-NN 54 62.96 / 16.67 MW - J - nHDon
RDA 54 62.96 14.81 16.67 MW - J - nHDon

CART: Classification and Regression Tree; K-NN: K-Nearest Neighbour; RDA: Regularized Discriminant Analysis.
MR: Misclassification Risk; MRcv: Misclassification Risk in prediction; No-Model MR: Misclassification Risk
without a model. MW: Molecular Weight, J: topological Balaban index; nHDon: number of donor atom in hydrogen
bonds.
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The classification models presented here can be useful as a first step in the prelimi-
nary screening and rapid pre-determination of the environmental distribution of
pesticides, allowing an easy a priori prediction of the environmental compartment in
which existing and new pesticides can be found; the starting point needed is only the
knowledge of a few molecular structure descriptors, without any a priori knowledge
of physico-chemical properties or analytical monitoring.
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